优点:在多核处理器的硬件的支持下,内核空间线程模型支持了真正的并行,当一个线程被阻塞后,允许另一个线程继续执行,所以并发能力较强。
缺点:每创建一个用户级线程都需要创建一个内核级线程与其对应,这样创建线程的开销比较大,会影响到应用程序的性能。
(3)多对多模型(M : N)
内核线程和用户线程的数量比为 M : N,内核用户空间综合了前两种的优点。

这种模型需要内核线程调度器和用户空间线程调度器相互操作,本质上是多个线程被绑定到了多个内核线程上,这使得大部分的线程上下文切换都发生在用户空间,而多个内核线程又可以充分利用处理器资源。
四、goroutine机制的调度实现
goroutine机制实现了M : N的线程模型,goroutine机制是协程(coroutine)的一种实现,golang内置的调度器,可以让多核CPU中每个CPU执行一个协程。
理解goroutine机制的原理,关键是理解Go语言scheduler的实现。
调度器是如何工作的
Go语言中支撑整个scheduler实现的主要有4个重要结构,分别是M、G、P、Sched, 前三个定义在runtime.h中,Sched定义在proc.c中。
-
Sched结构就是调度器,它维护有存储M和G的队列以及调度器的一些状态信息等。
M结构是Machine,系统线程,它由操作系统管理的,goroutine就是跑在M之上的;M是一个很大的结构,里面维护小对象内存cache(mcache)、当前执行的goroutine、随机数发生器等等非常多的信息。
P结构是Processor,处理器,它的主要用途就是用来执行goroutine的,它维护了一个goroutine队列,即runqueue。Processor是让我们从N:1调度到M:N调度的重要部分。
G是goroutine实现的核心结构,它包含了栈,指令指针,以及其他对调度goroutine很重要的信息,例如其阻塞的channel。
Processor的数量是在启动时被设置为环境变量GOMAXPROCS的值,或者通过运行时调用函数GOMAXPROCS()进行设置。Processor数量固定意味着任意时刻只有GOMAXPROCS个线程在运行go代码。
参考这篇传播很广的博客:http://morsmachine.dk/go-scheduler
我们分别用三角形,矩形和圆形表示Machine Processor和Goroutine。

在单核处理器的场景下,所有goroutine运行在同一个M系统线程中,每一个M系统线程维护一个Processor,任何时刻,一个Processor中只有一个goroutine,其他goroutine在runqueue中等待。一个goroutine运行完自己的时间片后,让出上下文,回到runqueue中。 多核处理器的场景下,为了运行goroutines,每个M系统线程会持有一个Processor。










