gin.Context 简单理解为贯穿整个 gin 声明周期的上下文容器,有点像是分身,亦或是量子纠缠的感觉。
有了这个 gin.Context, 我们就能在一个地方对 context 做出操作,而其他正在使用 context 的函数或方法,也会感受到 context 做出的变化。
ctx, _ := context.WithTimeout(c, 3*time.Second) //定义一个超时的 context
只要时间到了,我们就能用 ctx.Done() 获取到一个超时的 channel(通知),然后其他用到这个 ctx 的地方也会停掉,并释放 ctx。
一般来说,ctx.Done() 是结合 select 使用的。
所以我们又需要一个循环来监听 ctx.Done()
for {
select {
case <- ctx.Done():
// 返回结果
}
现在我们有两个 for 了,是不是能够合并下?
for {
select {
case resContainer = <-resChan:
sum += resContainer
fmt.Println("add", resContainer)
case <- ctx.Done():
fmt.Println("result:", sum)
return
}
}
诶嘿,看上去不错。
不过我们怎么在正常完成微服务调用的时候输出结果呢?
看来我们还需要一个 flag
var count int
for {
select {
case resContainer = <-resChan:
sum += resContainer
count ++
fmt.Println("add", resContainer)
if count > 2 {
fmt.Println("result:", sum)
return
}
case <- ctx.Done():
fmt.Println("timeout result:", sum)
return
}
}
我们加入一个计数器,因为我们只是调用3次微服务,所以当 count 大于2的时候,我们就应该结束并输出结果了。
要点3--并发中的等待
上面的计时器是一种偷懒的方法,因为我们知道了调用微服务的次数,如果我们并不知道,或者之后还要添加呢?
手动每次改 count 的判断阈值会不会太沙雕了?这时候我们就要加入 sync 包了。
我们将会使用的 sync 的一个特性是 WaitGroup。它的作用是等待一组协程运行完毕后,执行接下去的步骤。
我们来改下之前微服务调用的代码块:
var success = make(chan int, 1) // 成功的通道标识
wg := sync.WaitGroup{} // 创建一个 waitGroup 组
wg.Add(3) // 我们往组里加3个标识,因为我们要运行3个任务
go func() {
resChan <- microService1()
wg.Done() // 完成一个,Done()一个
}()
go func() {
resChan <- microService2()
wg.Done()
}()
go func() {
resChan <- microService3()
wg.Done()
}()
wg.Wait() // 直到我们前面三个标识都被 Done 了,否则程序一直会阻塞在这里
success <- 1 // 我们发送一个成功信号到通道中
既然我们有了 success 这个信号,那么再把它加入到监控 for 循环中,并做些修改,删除原来 count 判断的部分。
go func() {
for {
select {
case resContainer = <-resChan:
sum += resContainer
fmt.Println("add", resContainer)
case <- success:
fmt.Println("result:", sum)
return
case <- ctx.Done():
fmt.Println("result:", sum)
return
}
}
}()









