2) 将可能抛出异常的程序段嵌在try块之中。控制通过正常的顺序执行到达try语句,然后执行try块内的保护段。
3) 如果在保护段执行期间没有引起异常,那么跟在try块后的catch子句就不执行。程序从try块后跟随的最后一个catch子句后面的语句继续执行下去。
4) catch子句按其在try块后出现的顺序被检查。匹配的catch子句将捕获并处理异常(或继续抛掷异常)。
5) 如果匹配的处理器未找到,则运行函数terminate将被自动调用,其缺省功能是调用abort终止程序。
6)处理不了的异常,可以在catch的最后一个分支,使用throw语法,向上扔
7)异常机制与函数机制互不干涉,但捕捉的方式是基于类型匹配。捕捉相当于函数返回类型的匹配,而不是函数参数的匹配,所以捕捉不用考虑一个抛掷中的多种数据类型匹配问题。
catch代码块必须出现在try后,并且在try块后可以出现多个catch代码块,以捕捉各种不同类型的抛掷。
异常机制是基于这样的原理:程序运行实质上是数据实体在做一些操作,因此发生异常现象的地方,一定是某个实体出了差错,该实体所对应的数据类型便作为抛掷和捕捉的依据。
8)异常捕捉严格按照类型匹配
异常捕捉的类型匹配之苛刻程度可以和模板的类型匹配媲美,它不允许相容类型的隐式转换,比如,抛掷char类型用int型就捕捉不到.例如下列代码不会输出“int exception.”,从而也不会输出“That's ok.” 因为出现异常后提示退出
int main(){
try{
throw ‘H';
}
catch (int){
cout << "int exception.n";
}
cout << "That's ok.n";
return 0;
}
栈解旋(unwinding)
异常被抛出后,从进入try块起,到异常被抛掷前,这期间在栈上的构造的所有对象,都会被自动析构。析构的顺序与构造的顺序相反。这一过程称为栈的解旋(unwinding)。
#include <iostream>
#include <cstdio>
using namespace std;
class MyException {};
class Test
{
public:
Test(int a = 0, int b = 0)
{
this->a = a;
this->b = b;
cout << "Test 构造函数执行" << "a:" << a << " b: " << b << endl;
}
void printT()
{
cout << "a:" << a << " b: " << b << endl;
}
~Test()
{
cout << "Test 析构函数执行" << "a:" << a << " b: " << b << endl;
}
private:
int a;
int b;
};
void myFunc() throw (MyException)
{
Test t1;
Test t2;
cout << "定义了两个栈变量,异常抛出后测试栈变量的如何被析构" << endl;
throw MyException();
}
int main()
{
//异常被抛出后,从进入try块起,到异常被抛掷前,这期间在栈上的构造的所有对象,
//都会被自动析构。析构的顺序与构造的顺序相反。
//这一过程称为栈的解旋(unwinding)
try
{
myFunc();
}
//catch(MyException &e) //这里不能访问异常对象
catch (MyException) //这里不能访问异常对象
{
cout << "接收到MyException类型异常" << endl;
}
catch (...)
{
cout << "未知类型异常" << endl;
}
return 0;
}










