该图的拓扑有序系列:

注意:
在AOV-网中不应该出现有向环,因为存在环意味着某项活动应以自己为先决条件。若设计出这样的流程图,工程便无法进行。而对程序的数据流图来说,则表明存在一个死循环。因此,对给定的AOV-网应首先判定网中是否存在环。检测的办法是对有向图构造其顶点的拓扑有序序列,若网中所有顶点都在它的拓扑有序序列中,则该AOV-网中必定不存在环。
2.2.拓扑排序
离散数学基础知识:
首先复习一下离散数学中的偏序集合与全序集合两个概念。
若集合A 中的二元关系R 是自反的、非对称的和传递的,则R 是A 上的偏序关系。集合A 与关系R 一起称为一个偏序集合。
若R 是集合A 上的一个偏序关系,如果对每个a、b∈A 必有aRb 或bRa ,则R 是A上的全序关系。集合A 与关系R 一起称为一个全序集合。
直观地看,偏序指集合中仅有部分成员之间可比较,而全序指集合中全体成员之间均可比较。
[例如],图7.25所示的两个有向图,图中弧(x,y)表示x≤y,则(a)表示偏序,(b)表示全序。若在(a)的有向图上人为地加一个表示v2≤v3的弧(符号“≤”表示v2领先于v3),则(a)表示的亦为全序,且这个全序称为拓扑有序(Topological Order),而由偏序定义得到拓扑有序的操作便是拓扑排序。

2.3 拓扑排序算法
对AOV 网进行拓扑排序的方法和步骤是:
1、从AOV 网中选择一个没有前驱的顶点(该顶点的入度为0)并且输出它;










