加载任务以及它们的 Rails 标签,你会这样做:
这段代码有问题,它为每个标签创建了对象,花费很多内存。可选择的解决方案,将标签在数据库预加载。
tasks = Task.select <<-END *, array( select tags.name from tags inner join tasks_tags on (tags.id = tasks_tags.tag_id) where tasks_tags.task_id=tasks.id ) as tag_names END > 0.018 sec
这只需要内存存储额外一列,有一个数组标签。难怪快 3 倍。
2.2.2 数据集合
我所说的数据集合任何代码去总结或者分析数据。这些操作可以简单的总结,或者一些更复杂的。以小组排名为例。假设我们有一个员工,部门,工资的数据集,我们要计算员工的工资在一个部门的排名。
SELECT * FROM empsalary;
depname | empno | salary -----------+-------+------- develop | 6 | 6000 develop | 7 | 4500 develop | 5 | 4200 personnel | 2 | 3900 personnel | 4 | 3500 sales | 1 | 5000 sales | 3 | 4800
你可以用 Ruby 计算排名:
salaries = Empsalary.all
salaries.sort_by! { |s| [s.depname, s.salary] }
key, counter = nil, nil
salaries.each do |s|
if s.depname != key
key, counter = s.depname, 0
end
counter += 1
s.rank = counter
end
Empsalary 表里 100K 的数据程序在 4.02 秒内完成。替代 Postgres 查询,使用 window 函数做同样的工作在 1.1 秒内超过 4 倍。
SELECT depname, empno, salary, rank() OVER (PARTITION BY depname ORDER BY salary DESC) FROM empsalary;
depname | empno | salary | rank -----------+-------+--------+------ develop | 6 | 6000 | 1 develop | 7 | 4500 | 2 develop | 5 | 4200 | 3 personnel | 2 | 3900 | 1 personnel | 4 | 3500 | 2 sales | 1 | 5000 | 1 sales | 3 | 4800 | 2
4 倍加速已经令人印象深刻,有时候你得到更多,到 20 倍。从我自己经验举个例子。我有一个三维 OLAP 多维数据集与 600k 数据行。我的程序做了切片和聚合。在 Ruby 中,它花费了 1G 的内存大约 90 秒完成。等价的 SQL 查询在 5 内完成。
2.3 优化 Unicorn
如果你正在使用Unicorn,那么以下的优化技巧将会适用。Unicorn 是 Rails 框架中最快的 web 服务器。但是你仍然可以让它更运行得快一点。
2.3.1 预载入 App 应用
Unicorn 可以在创建新的 worker 进程前,预载入 Rails 应用。这样有两个好处。第一,主线程可以通过写入时复制的友好GC机制(Ruby 2.0以上),共享内存的数据。操作系统会透明的复制这些数据,以防被worker修改。第二,预载入减少了worker进程启动的时间。Rails worker进程重启是很常见的(稍后将进一步阐述),所以worker重启的速度越快,我们就可以得到更好的性能。










