实现精准快速医疗 AI、5G和IoT能做什么?

2020-02-09 10:20:03罗彬杰

比训练有素的放射科医生还要快

有趣的是,这种能力上的数量级飞跃,虽然对于控制流入医疗数据库的数据洪流至关重要,但也可以应用于医疗物联网设备。想想X光机,它们基本上只是是特殊的摄像机,还需要人类专家(放射科医生)检查图像,寻找健康或疾病的症状,然后将结果传递给医生。根据GE Healthcare的数据,现在医院每年产生50 PB(1PB相当于2^50字节)的数据,令人震惊的是,90%都来自医学成像,”GE表示,其中有97%以上未经分析或未使用。除了使用人工智能来帮助减少大量的无用图像,从而在多个方面减少数据浪费外,GE还与英特尔公司合作,创造了一个X射线系统,能够捕捉图像并在几秒钟内检测出一个收缩的肺(气胸)。

仅仅能够用人工智能检测气胸就已经是一个巨大的飞跃。然而,该项目的部分目标是更快地提供准确的结果,从而帮助自动化地诊断一部分工作量,减轻了许多放射科的工作。英特尔帮助集成了OpenVINO工具包,该工具包支持开发模拟人类视觉和视觉模式识别的应用程序。然后,这些工作负载可以跨CPU、GPU、AI特定的加速器和其他处理器进行处理。

通过优化,GE的X射线系统进行推断(图像评估)的速度比没有优化的快3.3倍。每幅图像的评估完成时间不到一秒,大大快于训练有素的放射科医生。GE的Optima XR240amx X射线系统是便携式的,因此,这种物联网设备可以从大范围的地方发送结果,并通过5G等快速连接将结果实时直接发送到医生的设备上。未来的版本可以将分析过的X射线直接输入病人的记录。在那里,它们成为构成患者数据集的多元数据库中的另一个因素,从而使医生能够提出个性化的建议。

我们正在解决的问题

以下是目前我们所面临的问题和一些解决方案:

随着全球人口的不断增长和老龄化,传统医疗在扩大规模方面遇到了困难。部分问题源于医疗行业产生的数据远远超过其基础设施目前所能处理的数据。

人工智能可以帮助自动化完成许多由卫生专家执行的任务。

通过将人工智能应用于一系列医疗数据类型和来源,护理建议可以根据患者的具体特征量身定制,以获得更高的准确性和有效性,而不是建议采用更有可能产生副作用的笼统做法。

人工智能可以通过使用专门为这些工作负载设计的硬件或软件平台来加速。

支持人工智能的平台可以嵌入并连接到医疗物联网设备,提供新的功能和使用价值。

物联网设备及其附属的生态系统可以配备5G等连接,以将其效用和价值扩展到那些不断增长的人口中。

美国为这一进程中人口增长带来的影响提供了有力的例证。根据美国疾病控制中心的信息,尽管在过去几年里,癌症新发病例的比例已经趋于平稳,但不断增长的人口使新发病例的数量从2010年的150万上升到2020年的190万,部分原因是超重、肥胖和传染病的比例上升。

相关文章 大家在看