苹果打响AI反击战!复盘8年布局

2018-07-30 20:48:08王振洲

随着新一代开发者大会的临近,A12处理器的跑分已经曝光。据传,A12在GeekBench中的跑分为单核5200、多核13000左右,比A11的单核性能大致提升24%、多核性能提升40%。根据产业链信息,A12有可能采用台积电7nm FinFET工艺,全新的7nm工艺芯片面积降低40%,性能提升20%,功耗可下降50%,再加上架构的改进和更多核心,届时性能很可能暴增。不过A12大核功耗问题仍然存在,苹果正着力解决,具体的核心数和架构信息也暂无消息。

被一众用户吐槽有点丑的“齐刘海”,则藏着iPhone X的另一大杀器——结构光模组,苹果去年重磅推出的可瞬间解锁和移动支付的Face ID正是基于此而实现。结构光模组是一整套原深感摄像头系统,内部集成了六七个传感器。在使用Face ID解锁时,点阵投影器会投射出高达30000多个肉眼看不见的光点投影到用户脸上,感应获取人脸各部分形变数据,完成实时3D建模,并且识别不受眼镜、发型的影响。结构光模组发挥了普通摄像头无法匹敌的出色视觉效果,其脸部追踪技术还实现了Animoji动画表情和和人像光效等全新功能。

苹果打响AI反击战!复盘8年布局

苹果善于提供新技术来吸引高端消费,或许你觉得没那么重要的3D Touch、Face ID、双摄人像等模式,却在行业内引领一轮又一轮新的风潮。自苹果iPhone X搭载3D结构光模组以来, 全球3D结构光供应链日趋完善, VCSEL 供应商 Lumentum、Finisar、AMS、IQS、全新光电以及台湾晶圆代工厂稳懋、晶电等均纷纷布局 3D结构光领域。

在苹果iPhone X问世近1年后,OPPO、小米才分别公布采用3D结构光方案的OPPO FIND X、小米8探索版,同样,华为预计在下半年相关机型也将搭载3D结构光,这些国内各手机品牌的陆续跟进,说明了苹果在智能手机的创新布局上保持前瞻性。不过据传苹果与关键元件VCSEL供应商Lumentum签有协议,在专利保护之下,3D 结构光在安卓手机的大规模普及可能要等到明年。这也说明了继产业链之后,安卓阵营在技术创新上的落后使其仍在持续追逐苹果的脚步,iPhone在智能手机的领先地位和AI领域的突破性成就都很难在短时间内被撼动。

三、赋能开发者:Core ML+Create ML

在发力AI芯片的同时,苹果还向用户开放了移动端 AI开发的大门,Core ML和Create ML就是苹果AI开发者准备的究极开发工具。Core ML让开发者更方便的训练机器学习模型并封装进App,而Create ML的最特别之处在于实现了在移动设备上的AI计算。

Core ML是苹果在WWDC 2017推出的新型机器学习框架,主要支持图像分类和文本信息处理两个模块,开发者可以把机器学习模型封装到App中。第一代Core ML存在支持第三方框架少、尺寸过大且不能定制化等问题,针对这些缺陷,苹果在今年的WWDC开发者大会上推出更小更快的2.0版本,同时对模型大小和运行速度进行了相应优化。其配套工具 Core ML Tools 也增加了可支持的第三方机器学习框架,并新增了可以批量预测的API,开发者可以借助工具定制化工具自定义神经网络层和Core ML 模型。苹果提供了从流行框架模型到其定义的标准模式格式的转换工具,可以使用各个模型的训练阶段,还把Swift代码都生成好了,方便人们进行开发工作。

苹果打响AI反击战!复盘8年布局

Create ML框架则可以直接从数据上生成Core ML模型,极大程度上解决了模型获取方面的局限。Create ML是在WWDC 2018推出的对本地AI应用进行机器学习训练的工具,支持GPU加速,支持任务主要包含计算机视觉、自然语言处理和标注信息预测的一般模型。通常AI训练过程会非常消耗CPU资源和存储空间,而且由于云端服务器有更强计算能力,这个过程往往在云端进行,一旦断网就不能继续进行了。而Create ML打破联网的限制,不仅能实现本地AI训练,还为用户提供将AI模型嵌入App的快速工具,给了每个人自主开发AI应用的便利条件。

苹果打响AI反击战!复盘8年布局

这两款工具都承袭了苹果强调保护用户隐私的一贯态度。所有数据都存储在手机上,相关计算也都在本地完成,有助于降低数据泄露的风险。

四、最强优势:AI应用生态圈

和谷歌、亚马逊、微软不同,苹果的最大特点在专注于完全适配自家软硬件设备的“闭环式”完整生态系统。