Java C++题解eetcode940不同的子序列 II

2022-10-17 18:10:33
目录
题目要求思路一:动态规划+转移优化JavaC++Rust思路二:求和(调api)JavaC++Rust总结

题目要求

思路一:动态规划+转移优化

Java

class Solution {
    public int distinctSubseqII(String s) {
        int MOD = (int)1e9+7;
        int res = 0;
        int[] f = new int[26];
        for (int i = 0; i < s.length(); i++) {
            int cur = s.charAt(i) - 'a', pre = f[cur];
            f[cur] = (res + 1) % MOD;
            res = ((res + f[cur] - pre) % MOD + MOD) % MOD;
        }
        return res;
    }
}
    时间复杂度:O(n×C)空间复杂度:O(C)

    C++

    class Solution {
    public:
        int distinctSubseqII(string s) {
            int MOD = (int)1e9+7;
            int res = 0;
            int f[26];
            memset(f, 0, sizeof(f));
            for (int i = 0; i < s.size(); i++) {
                int cur = s[i] - 'a', pre = f[cur];
                f[cur] = (res + 1) % MOD;
                res = ((res + f[cur] - pre) % MOD + MOD) % MOD;
            }
            return res;
        }
    };
    
      时间复杂度:O(n×C)空间复杂度:O(C)

      Rust

      impl Solution {
          pub fn distinct_subseq_ii(s: String) -> i32 {
              let MOD = 1000000007;
              let mut res = 0;
              let mut f = vec![0; 26];
              for cur in s.chars() {
                  let i = cur as u8 - 'a' as u8;
                  let pre = f[i as usize];
                  f[i as usize] = (res + 1) % MOD;
                  res = ((res + f[i as usize] - pre) % MOD + MOD) % MOD;
              }
              res
          }
      }
      
        时间复杂度:O(n×C)空间复杂度:O(C)

        思路二:求和(调api)

          思路和上面相似,但更简单粗暴一点,f[i]依旧用于记录以当前字符为末尾的子串数量,在每次遍历中计算整个数组的和(即当前的全部子串数量),然后加上自己的单字符串,表示为f[i]=sum(f)+1,答案即为整个数组的和;此处规避掉了重复字符的讨论,因为相同字符后面的会覆盖前面的,可以看作每次遍历都在已有子串的基础上加一个字符【md我在说什么,举个例子吧】;

          栗子【vonvv】:

          当前遍历字符f[i]子串
          v1v
          o2vo,o
          n4vn,von,on,n
          v8vv,vov,ov,vnv,vonv,onv,nv,v
          v15vv,vov,ov,vnv,vonv,onv,nv,vvv,vovv,ovv,vnvv,vonvv,onvv,nvv,vv,v

          最终即为三个字符对应值相加f[o]+f[n]+f[v]=2+4+15=21

          注意!!!

          因为要计算sum(f),这值可能会超级大,所以要用long型!

          Java

          class Solution {
              public int distinctSubseqII(String s) {
                  int MOD = (int)1e9+7;
                  long[] f = new long[26];
                  for (char cur : s.toCharArray()) {
                      f[cur - 'a'] = Arrays.stream(f).sum() % MOD + 1;
                  }
                  return (int)(Arrays.stream(f).sum() % MOD);
              }
          }
          
            时间复杂度:O(n×C)空间复杂度:O(C)

            C++

            class Solution {
            public:
                int distinctSubseqII(string s) {
                    int MOD = (int)1e9+7;
                    vector<long> f(26, 0);
                    for (auto cur : s) {
                        f[cur - 'a'] = accumulate(f.begin(), f.end(), 1l) % MOD;
                    }
                    return accumulate(f.begin(), f.end(), 0l) % MOD;
                }
            };
            
              时间复杂度:O(n×C)空间复杂度:O(C)

              Rust

                get了求和函数的奇妙调用【但没完全get】
                impl Solution {
                    pub fn distinct_subseq_ii(s: String) -> i32 {
                        let MOD = 1000000007;
                        let mut f = vec![0; 26];
                        for cur in s.chars() {
                            f[(cur as u8 - 'a' as u8) as usize] = f.iter().sum::<i64>() % MOD + 1;
                        }
                        (f.iter().sum::<i64>() % MOD) as i32
                    }
                }
                
                  时间复杂度:O(n×C)空间复杂度:O(C)

                  总结

                  完全没思路的一道题~是那种望而生畏,读完题失去梦想,看完题解觉得自己是傻子的类型……

                  看普通动规的题解感觉好难理解,差点放弃,然后跳到后面理清思路返回来就好理解很多,但还是只选了两种比较简洁的方式写;

                  以上就是Java>