python绘制三维图的详细新手教程

2022-08-30 13:00:15
目录
一、初始化二、直线绘制(Line plots)三、散点绘制(Scatter plots)四、线框图(Wireframe plots)五、表面图(Surface plots)六、三角表面图(Tri-Surface plots)七、等高线(Contour plots)八、Bar plots(条形图)九、子图绘制(subplot)补充:总结

本文仅仅梳理最基本的绘图方法。

一、初始化

假设已经安装了matplotlib工具包。

利用matplotlib.figure.Figure创建一个图框:

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

二、直线绘制(Line>

基本用法:

ax.plot(x,y,z,label=' ')

code:

import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt
 
mpl.rcParams['legend.fontsize'] = 10
 
fig = plt.figure()
ax = fig.gca(projection='3d')
theta = np.linspace(-4 * np.pi, 4 * np.pi, 100)
z = np.linspace(-2, 2, 100)
r = z**2 + 1
x = r * np.sin(theta)
y = r * np.cos(theta)
ax.plot(x, y, z, label='parametric curve')
ax.legend()
 
plt.show()

三、散点绘制(Scatter>

基本用法:

ax.scatter(xs, ys, zs, s=20, c=None, depthshade=True, *args, *kwargs)
    xs,ys,zs:输入数据;s:scatter点的尺寸c:颜色,如c = 'r'就是红色;depthshase:透明化,True为透明,默认为True,False为不透明*args等为扩展变量,如maker = 'o',则scatter结果为’o‘的形状

    code:

    from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    import numpy as np
     
     
    def randrange(n, vmin, vmax):
        '''
        Helper function to make an array of random numbers having shape (n, )
        with each number distributed Uniform(vmin, vmax).
        '''
        return (vmax - vmin)*np.random.rand(n) + vmin
     
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
     
    n = 100
     
    # For each set of style and range settings, plot n random points in the box
    # defined by x in [23, 32], y in [0, 100], z in [zlow, zhigh].
    for c, m, zlow, zhigh in [('r', 'o', -50, -25), ('b', '^', -30, -5)]:
        xs = randrange(n, 23, 32)
        ys = randrange(n, 0, 100)
        zs = randrange(n, zlow, zhigh)
        ax.scatter(xs, ys, zs, c=c, marker=m)
     
    ax.set_xlabel('X Label')
    ax.set_ylabel('Y Label')
    ax.set_zlabel('Z Label')
     
    plt.show()

    四、线框图(Wireframe>

    基本用法:

    ax.plot_wireframe(X, Y, Z, *args, **kwargs)
      X,Y,Z:输入数据rstride:行步长cstride:列步长rcount:行数上限ccount:列数上限

      code:

      from mpl_toolkits.mplot3d import axes3d
      import matplotlib.pyplot as plt
       
       
      fig = plt.figure()
      ax = fig.add_subplot(111, projection='3d')
       
      # Grab some test data.
      X, Y, Z = axes3d.get_test_data(0.05)
       
      # Plot a basic wireframe.
      ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10)
       
      plt.show()

      五、表面图(Surface>

      基本用法:

      ax.plot_surface(X, Y, Z, *args, **kwargs)
        X,Y,Z:数据rstride、cstride、rcount、ccount:同Wireframe plots定义color:表面颜色cmap:图层

        code:

        from mpl_toolkits.mplot3d import Axes3D
        import matplotlib.pyplot as plt
        from matplotlib import cm
        from matplotlib.ticker import LinearLocator, FormatStrFormatter
        import numpy as np
         
         
        fig = plt.figure()
        ax = fig.gca(projection='3d')
         
        # Make data.
        X = np.arange(-5, 5, 0.25)
        Y = np.arange(-5, 5, 0.25)
        X, Y = np.meshgrid(X, Y)
        R = np.sqrt(X**2 + Y**2)
        Z = np.sin(R)
         
        # Plot the surface.
        surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm,
                               linewidth=0, antialiased=False)
         
        # Customize the z axis.
        ax.set_zlim(-1.01, 1.01)
        ax.zaxis.set_major_locator(LinearLocator(10))
        ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
         
        # Add a color bar which maps values to colors.
        fig.colorbar(surf, shrink=0.5, aspect=5)
         
        plt.show()

        六、三角表面图(Tri-Surface>

        基本用法:

        ax.plot_trisurf(*args, **kwargs)
          X,Y,Z:数据其他参数类似surface-plot

          code:

          from mpl_toolkits.mplot3d import Axes3D
          import matplotlib.pyplot as plt
          import numpy as np
           
           
          n_radii = 8
          n_angles = 36
           
          # Make radii and angles spaces (radius r=0 omitted to eliminate duplication).
          radii = np.linspace(0.125, 1.0, n_radii)
          angles = np.linspace(0, 2*np.pi, n_angles, endpoint=False)
           
          # Repeat all angles for each radius.
          angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
           
          # Convert polar (radii, angles) coords to cartesian (x, y) coords.
          # (0, 0) is manually added at this stage,  so there will be no duplicate
          # points in the (x, y) plane.
          x = np.append(0, (radii*np.cos(angles)).flatten())
          y = np.append(0, (radii*np.sin(angles)).flatten())
           
          # Compute z to make the pringle surface.
          z = np.sin(-x*y)
           
          fig = plt.figure()
          ax = fig.gca(projection='3d')
           
          ax.plot_trisurf(x, y, z, linewidth=0.2, antialiased=True)
           
          plt.show()

          七、等高线(Contour>

          基本用法:

          ax.contour(X, Y, Z, *args, **kwargs)

          code:

          from mpl_toolkits.mplot3d import axes3d
          import matplotlib.pyplot as plt
          from matplotlib import cm
           
          fig = plt.figure()
          ax = fig.add_subplot(111, projection='3d')
          X, Y, Z = axes3d.get_test_data(0.05)
          cset = ax.contour(X, Y, Z, cmap=cm.coolwarm)
          ax.clabel(cset, fontsize=9, inline=1)
           
          plt.show()

          二维的等高线,同样可以配合三维表面图一起绘制:

          code:

          from mpl_toolkits.mplot3d import axes3d
          from mpl_toolkits.mplot3d import axes3d
          import matplotlib.pyplot as plt
          from matplotlib import cm
           
          fig = plt.figure()
          ax = fig.gca(projection='3d')
          X, Y, Z = axes3d.get_test_data(0.05)
          ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.3)
          cset = ax.contour(X, Y, Z, zdir='z', offset=-100, cmap=cm.coolwarm)
          cset = ax.contour(X, Y, Z, zdir='x', offset=-40, cmap=cm.coolwarm)
          cset = ax.contour(X, Y, Z, zdir='y', offset=40, cmap=cm.coolwarm)
           
          ax.set_xlabel('X')
          ax.set_xlim(-40, 40)
          ax.set_ylabel('Y')
          ax.set_ylim(-40, 40)
          ax.set_zlabel('Z')
          ax.set_zlim(-100, 100)
           
          plt.show()

          也可以是三维等高线在二维平面的投影:

          code:

          from mpl_toolkits.mplot3d import axes3d
          import matplotlib.pyplot as plt
          from matplotlib import cm
           
          fig = plt.figure()
          ax = fig.gca(projection='3d')
          X, Y, Z = axes3d.get_test_data(0.05)
          ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.3)
          cset = ax.contourf(X, Y, Z, zdir='z', offset=-100, cmap=cm.coolwarm)
          cset = ax.contourf(X, Y, Z, zdir='x', offset=-40, cmap=cm.coolwarm)
          cset = ax.contourf(X, Y, Z, zdir='y', offset=40, cmap=cm.coolwarm)
           
          ax.set_xlabel('X')
          ax.set_xlim(-40, 40)
          ax.set_ylabel('Y')
          ax.set_ylim(-40, 40)
          ax.set_zlabel('Z')
          ax.set_zlim(-100, 100)
           
          plt.show()

          八、Bar>

          基本用法:

          ax.bar(left, height, zs=0, zdir='z', *args, **kwargs
            x,y,zs = z,数据zdir:条形图平面化的方向,具体可以对应代码理解。

            code:

            from mpl_toolkits.mplot3d import Axes3D
            import matplotlib.pyplot as plt
            import numpy as np
             
            fig = plt.figure()
            ax = fig.add_subplot(111, projection='3d')
            for c, z in zip(['r', 'g', 'b', 'y'], [30, 20, 10, 0]):
                xs = np.arange(20)
                ys = np.random.rand(20)
             
                # You can provide either a single color or an array. To demonstrate this,
                # the first bar of each set will be colored cyan.
                cs = [c] * len(xs)
                cs[0] = 'c'
                ax.bar(xs, ys, zs=z, zdir='y', color=cs, alpha=0.8)
             
            ax.set_xlabel('X')
            ax.set_ylabel('Y')
            ax.set_zlabel('Z')
             
            plt.show()

            九、子图绘制(subplot)

            A-不同的2-D图形,分布在3-D空间,其实就是投影空间不空,对应code:

            from mpl_toolkits.mplot3d import Axes3D
            import numpy as np
            import matplotlib.pyplot as plt
             
            fig = plt.figure()
            ax = fig.gca(projection='3d')
             
            # Plot a sin curve using the x and y axes.
            x = np.linspace(0, 1, 100)
            y = np.sin(x * 2 * np.pi) / 2 + 0.5
            ax.plot(x, y, zs=0, zdir='z', label='curve in (x,y)')
             
            # Plot scatterplot data (20 2D points per colour) on the x and z axes.
            colors = ('r', 'g', 'b', 'k')
            x = np.random.sample(20*len(colors))
            y = np.random.sample(20*len(colors))
            c_list = []
            for c in colors:
                c_list.append([c]*20)
            # By using zdir='y', the y value of these points is fixed to the zs value 0
            # and the (x,y) points are plotted on the x and z axes.
            ax.scatter(x, y, zs=0, zdir='y', c=c_list, label='points in (x,z)')
             
            # Make legend, set axes limits and labels
            ax.legend()
            ax.set_xlim(0, 1)
            ax.set_ylim(0, 1)
            ax.set_zlim(0, 1)
            ax.set_xlabel('X')
            ax.set_ylabel('Y')
            ax.set_zlabel('Z')

            B-子图Subplot用法

            与MATLAB不同的是,如果一个四子图效果,如:

            MATLAB:

            subplot(2,2,1)
            subplot(2,2,2)
            subplot(2,2,[3,4])

            Python:

            subplot(2,2,1)
            subplot(2,2,2)
            subplot(2,1,2)

            code:

            import matplotlib.pyplot as plt
            from mpl_toolkits.mplot3d.axes3d import Axes3D, get_test_data
            from matplotlib import cm
            import numpy as np
             
             
            # set up a figure twice as wide as it is tall
            fig = plt.figure(figsize=plt.figaspect(0.5))
             
            #===============
            #  First subplot
            #===============
            # set up the axes for the first plot
            ax = fig.add_subplot(2, 2, 1, projection='3d')
             
            # plot a 3D surface like in the example mplot3d/surface3d_demo
            X = np.arange(-5, 5, 0.25)
            Y = np.arange(-5, 5, 0.25)
            X, Y = np.meshgrid(X, Y)
            R = np.sqrt(X**2 + Y**2)
            Z = np.sin(R)
            surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm,
                                   linewidth=0, antialiased=False)
            ax.set_zlim(-1.01, 1.01)
            fig.colorbar(surf, shrink=0.5, aspect=10)
             
            #===============
            # Second subplot
            #===============
            # set up the axes for the second plot
            ax = fig.add_subplot(2,1,2, projection='3d')
             
            # plot a 3D wireframe like in the example mplot3d/wire3d_demo
            X, Y, Z = get_test_data(0.05)
            ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10)
             
            plt.show()

            补充:

            文本注释的基本用法:

            code:

            from mpl_toolkits.mplot3d import Axes3D
            import matplotlib.pyplot as plt
             
             
            fig = plt.figure()
            ax = fig.gca(projection='3d')
             
            # Demo 1: zdir
            zdirs = (None, 'x', 'y', 'z', (1, 1, 0), (1, 1, 1))
            xs = (1, 4, 4, 9, 4, 1)
            ys = (2, 5, 8, 10, 1, 2)
            zs = (10, 3, 8, 9, 1, 8)
             
            for zdir, x, y, z in zip(zdirs, xs, ys, zs):
                label = '(%d, %d, %d), dir=%s' % (x, y, z, zdir)
                ax.text(x, y, z, label, zdir)
             
            # Demo 2: color
            ax.text(9, 0, 0, "red", color='red')
             
            # Demo 3: text2D
            # Placement 0, 0 would be the bottom left, 1, 1 would be the top right.
            ax.text2D(0.05, 0.95, "2D Text", transform=ax.transAxes)
             
            # Tweaking display region and labels
            ax.set_xlim(0, 10)
            ax.set_ylim(0, 10)
            ax.set_zlim(0, 10)
            ax.set_xlabel('X axis')
            ax.set_ylabel('Y axis')
            ax.set_zlabel('Z axis')
             
            plt.show()
            

            参考:

            http://matplotlib.org/mpl_toolkits/mplot3d/tutorial.html

            总结

            到此这篇关于python绘制三维图的文章就介绍到这了,更多相关python绘制三维图内容请搜索易采站长站以前的文章或继续浏览下面的相关文章希望大家以后多多支持易采站长站!