Python Pandas 修改表格数据类型 DataFrame 列的顺序案例

2022-08-23 14:02:13
目录
一、修改表格数据类型 DataFrame 列的顺序1.1主要知识点1.2创建 python 文件1.3运行结果 二、Pandas 如何统计某个数据列的空值个数2.1主要知识点2.2创建 python 文件2.3运行结果三、Pandas如何移除包含空值的行3.1主要知识点3.2创建 python 文件3.3运行结果四、Pandas如何精确设置表格数据的单元格的值4.1主要知识点4.2创建 python 文件4.3运行结果 

一、修改表格数据类型>

实战场景:Pandas 如何修改表格数据类型 DataFrame 列的顺序

1.1主要知识点

    文件读写基础语法数据构建PandasNumpy

    实战:

    1.2创建>
    import numpy as np
    import pandas as pd
    
    np.random.seed(66)
    df = pd.DataFrame(np.random.rand(10, 4), columns=list('ABCD'))
    print(df)
    df = df[["D", "A", "B", "C"]]
    print(df)

    1.3运行结果 

     >0  0.154288  0.133700  0.362685  0.679109
    1  0.194450  0.251210  0.758416  0.557619
    2  0.514803  0.467800  0.087176  0.829095
    3  0.298641  0.031346  0.678006  0.903489
    4  0.514451  0.539105  0.664328  0.634057
    5  0.353419  0.026643  0.165290  0.879319
    6  0.067820  0.369086  0.115501  0.096294
    7  0.083770  0.086927  0.022256  0.771043
    8  0.049213  0.465223  0.941233  0.216512
    9  0.361318  0.031319  0.304045  0.188268
              D         A         B         C
    0  0.679109  0.154288  0.133700  0.362685
    1  0.557619  0.194450  0.251210  0.758416
    2  0.829095  0.514803  0.467800  0.087176
    3  0.903489  0.298641  0.031346  0.678006
    4  0.634057  0.514451  0.539105  0.664328
    5  0.879319  0.353419  0.026643  0.165290
    6  0.096294  0.067820  0.369086  0.115501
    7  0.771043  0.083770  0.086927  0.022256
    8  0.216512  0.049213  0.465223  0.941233
    9  0.188268  0.361318  0.031319  0.304045

    二、Pandas>

    实战场景:Pandas 如何统计某个数据列的空值个数

    2.1主要知识点

      文件读写基础语法Pandasnumpy

      实战:

      2.2创建>
      """
      对如下DF,设置两个单元格的值
      ·使用iloc 设置(3,B)的值是nan
      ·使用loc设置(8,D)的值是nan
      """
      import numpy as np
      import pandas as pd
      np.random.seed(66)
      df = pd.DataFrame(np.random.rand(10, 4), columns=list('ABCD'))
      df.iloc[3, 1] = np.nan
      df.loc[8, 'D'] = np.nan
      print(df)
      print(df.isnull().sum())

      2.3运行结果

       >0  0.154288  0.133700  0.362685  0.679109
      1  0.194450  0.251210  0.758416  0.557619
      2  0.514803  0.467800  0.087176  0.829095
      3  0.298641       NaN  0.678006  0.903489
      4  0.514451  0.539105  0.664328  0.634057
      5  0.353419  0.026643  0.165290  0.879319
      6  0.067820  0.369086  0.115501  0.096294
      7  0.083770  0.086927  0.022256  0.771043
      8  0.049213  0.465223  0.941233       NaN
      9  0.361318  0.031319  0.304045  0.188268
      A    0
      B    1
      C    0
      D    1
      dtype: int64

      三、Pandas如何移除包含空值的行

      实战场景:Pandas如何移除包含空值的行

      3.1主要知识点

        文件读写基础语法Pandasnumpy

        实战:

        3.2创建>
        """
        对如下DF,设置两个单元格的值
        ·使用iloc 设置(3,B)的值是nan
        ·使用loc设置(8,D)的值是nan
        """
        import numpy as np
        import pandas as pd
         
        np.random.seed(66)
        df = pd.DataFrame(np.random.rand(10, 4), columns=list('ABCD'))
        df.iloc[3, 1] = np.nan
        df.loc[8, 'D'] = np.nan
        print(df)
        df2 = df.dropna()
        print(df2)

        3.3运行结果

         >0  0.154288  0.133700  0.362685  0.679109
        1  0.194450  0.251210  0.758416  0.557619
        2  0.514803  0.467800  0.087176  0.829095
        3  0.298641       NaN  0.678006  0.903489
        4  0.514451  0.539105  0.664328  0.634057
        5  0.353419  0.026643  0.165290  0.879319
        6  0.067820  0.369086  0.115501  0.096294
        7  0.083770  0.086927  0.022256  0.771043
        8  0.049213  0.465223  0.941233       NaN
        9  0.361318  0.031319  0.304045  0.188268
                  A         B         C         D
        0  0.154288  0.133700  0.362685  0.679109
        1  0.194450  0.251210  0.758416  0.557619
        2  0.514803  0.467800  0.087176  0.829095
        4  0.514451  0.539105  0.664328  0.634057
        5  0.353419  0.026643  0.165290  0.879319
        6  0.067820  0.369086  0.115501  0.096294
        7  0.083770  0.086927  0.022256  0.771043
        9  0.361318  0.031319  0.304045  0.188268

        四、Pandas如何精确设置表格数据的单元格的值

        实战场景:Pandas如何精确设置表格数据的单元格的值

        4.1主要知识点

          文件读写基础语法Pandasnumpy

          实战:

          4.2创建>
          """
          对如下DF,设置两个单元格的值
          ·使用iloc 设置(3,B)的值是nan
          ·使用loc设置(8,D)的值是nan
          """
          import numpy as np
          import pandas as pd
          np.random.seed(66)
          df = pd.DataFrame(np.random.rand(10, 4), columns=list('ABCD'))
          print(df)
           
          df.iloc[3, 1] = np.nan
          df.loc[8, 'D'] = np.nan
           
          print(df)

          4.3运行结果 

           >0  0.154288  0.133700  0.362685  0.679109
          1  0.194450  0.251210  0.758416  0.557619
          2  0.514803  0.467800  0.087176  0.829095
          3  0.298641  0.031346  0.678006  0.903489
          4  0.514451  0.539105  0.664328  0.634057
          5  0.353419  0.026643  0.165290  0.879319
          6  0.067820  0.369086  0.115501  0.096294
          7  0.083770  0.086927  0.022256  0.771043
          8  0.049213  0.465223  0.941233  0.216512
          9  0.361318  0.031319  0.304045  0.188268
                    A         B         C         D
          0  0.154288  0.133700  0.362685  0.679109
          1  0.194450  0.251210  0.758416  0.557619
          2  0.514803  0.467800  0.087176  0.829095
          3  0.298641       NaN  0.678006  0.903489
          4  0.514451  0.539105  0.664328  0.634057
          5  0.353419  0.026643  0.165290  0.879319
          6  0.067820  0.369086  0.115501  0.096294
          7  0.083770  0.086927  0.022256  0.771043
          8  0.049213  0.465223  0.941233       NaN
          9  0.361318  0.031319  0.304045  0.188268 

          到此这篇关于Python Pandas 修改表格数据类型 DataFrame 列的顺序案例的文章就介绍到这了,更多相关Python Pandas 内容请搜索易采站长站以前的文章或继续浏览下面的相关文章希望大家以后多多支持易采站长站!