目录
二叉树分类二叉树性质
性质的使用
二叉树的遍历
前序遍历
中序遍历
后序遍历
层序遍历
求二叉树的节点数
求二叉树叶子结点个数
求二叉树的最大深度
二叉树的销毁
二叉树分类
满二叉树
除最后一层无任何子节点外,每一层上的所有结点都有两个子结点的二叉树。也可以理解为每一层的结点数都达到最大值的二叉树。

完全二叉树
一棵深度为k的有n个结点的二叉树,对树中的结点按从上至下、从左到右的顺序进行编号,如果编号为i(1≤i≤n)的结点与满二叉树中编号为i的结点在二叉树中的位置相同,则这棵二叉树称为完全二叉树。
简单的说,完全二叉树就是最后一层可以有缺失的满二叉树(完全二叉树是一种特殊的满二叉树),并且是从右往左的缺失。

二叉树性质
若规定根节点的层数为1,则一棵树非空二叉树的第>若规定根节点层数为1,则深度为h的二叉树的最大节点数是2^h−1对任何一颗二叉树,如果叶节点(度为0的节点)个数为 n0 ,度为 2 的节点个数为 n2 ,则n0 = n2 + 1。
若规定根节点层数为1,具有N个节点的满二叉树的深度为小于(log_2)N+1的最大整数。
性质的使用
在具有>
A n
B n + 1
C n - 1
D n / 2
分析:
设度为 0 的结点有 x0 个
设度为 1 的结点有 x1 个
设度为 2 的结点有 x2 个
x0 + x1 + x2 = 2n
x0 = x2 + 1
由上面两个式子可推出:2 * 2x2 + x1 + 1 = 2n
因为是完全二叉树,x1 可能是0,1,但是要使上式结果为偶数,x1只能是1,所以 x2 等于n , 选A。
二叉树的遍历
首先我们先创建一个简单的二叉树

前序遍历
前序(先序):>
预期结果:A B D E C
//前序 void PrevOrder(BTNode* root) { if (root == NULL) { //为了结果更加直观,将NULL打印 printf("NULL "); return; } //先打印根的数据 printf("%c ", root-http://>data); //遍历左子树 PrevOrder(root->left); //遍历右子树 PrevOrder(root->right); }编译结果:

中序遍历
中序:左子树>
预期结果:D B E A C
void MidOrder(BTNode* root) { //为了结果更加直观,将NULL打印 if (root == NULL) { printf("NULL "); return; } MidOrder(root->left); printf("%c ", root->data); MidOrder(root->right); }编译结果:

后序遍历
后续:左子树>
预期结果:D E B C A
void PostOrder(BTNode* root) { if (root == NULL) { printf("NULL "); return; } PostOrder(root->left); PostOrder(root->right); printf("%c ", root->data); }编译结果:

层序遍历











