解决问题
问题找到了,解决起来就容易多了~~
select的时候加了一个字段uin,改为下面这样
select uin,id,url from funkSpeed where id>=101 and id<=200;
然后更新的时候使用
update fuckSpeed set type=[type],typeid=[typeid] where uin=[uin] id=[id]
这样一来索引就是用上了。
三下五除二改好了代码,试着启动了一个进程,看看效果如何,果然,效果提升的不是一点点,平均30+次/s,这样大概3个小时左右就可以完成所有的更新了。
模拟场景二:
需求6个表 pid字段 写到对应的brand_id字段
问题sql背景:项目有6个表的要根据pid字段要写入对应的brand_id字段。但是这个其中有两个表是千万级别的。我的worker运行之后,线上的mysql主从同步立刻延迟了!运行了一个多小时之后,居然延迟到了40分钟,而且只更新了十几万行数据。问题sql如下:
<!– 根据商品id更新品牌id –>
<update id=”updateBrandIdByPid” parameterClass=”com.jd.chat.worker.domain.param.UpdateBrandIdParam”>
UPDATE $tableName$
SET brand_id = #newBrandId#
WHERE pid = #pid#
AND brand_id = 0
</update>
项目组的mysql专家帮我分析了下,因为pid字段没有索引,mysql引擎要逐行扫描出与传入的pid值相等的列,然后更新数据,也就是要扫描完1000W+行磁盘数据才能执行完这个sql。更严重的是,这个千万级的表里面有多少个不同的pid,我就要执行多少个这样的sql。
同事给我的建议的根据id字段进行sql代码层次的纵向分表。每次更新1000行的数据,这样mysql引擎就不用每次在扫全表了,数据库压力是之前的万分之一。而且id作为主键,是有索引的有索引,有索引能大大优化查询性能,优化后的sql如下:
<!– 根据商品id更新品牌id –>
<update id=”updateBrandIdByPid” parameterClass=”com.jd.chat.worker.domain.param.UpdateBrandIdParam”>
UPDATE $tableName$
SET brand_id = #newBrandId#
WHERE pid = #pid#
AND brand_id = 0
AND id BETWEEN #startNum# AND #endNum#
</update>
仅仅用了id限区间的语句,将一个千万级的大表代码层次上进行纵向切割。重新上线worker后,mysql主从没有任何延迟!而且经过监视,短短10分钟就更新了十几万数据,效率是之前的6倍!更重要的是数据库负载均衡,应用健康运行。










