
图5.查询分析器选择了表扫描
可以看出,查询分析器此时选择了表扫描来进行连接,这种方式效率要低下很多,因此好的覆盖索引和Select *都是需要注意的地方。另外,上面情况即使涉及到表扫描,依然是比较理想的情况,更糟糕的情况是使用多个不等式作为连接时,查询分析器即使知道每一个列的统计分布,但却不知道几个条件的联合分布,从而产生错误的执行计划,如图6所示。

图6.由于无法预估联合分布,导致的偏差
由图6中,我们可以看出,估计的行数和实际的行数存在巨大的偏差,从而应该使用表扫描但查询分析器选择了书签查找,这种情况对性能的影响将会比表扫描更加巨大。具体大到什么程度呢?我们可以通过强制表扫描和查询分析器的默认计划进行比对,如图7所示。

图7.强制表扫描性能反而更好
合并连接(Merge Join)
谈到合并连接,我突然想起在西雅图参加SQL Pass峰会晚上酒吧排队点酒,由于我和另外一哥们站错了位置,貌似我们两个在插队一样,我赶紧说:I’m sorry,i thought here is end of line。对方无不幽默的说:”It’s OK,In SQL Server,We called it merge join”。
由上面的小故事不难看出,Merge Join其实上就是将两个有序队列进行连接,需要两端都已经有序,所以不必像Loop Join那样不断的查找循环内部的表。其次,Merge Join需要表连接条件中至少有一个等号查询分析器才会去选择Merge Join。
Merge Join的过程我们可以简单用下面图进行描述:

图8.Merge Join第一步
Merge Join首先从两个输入集合中各取第一行,如果匹配,则返回匹配行。加入两行不匹配,则有较小值的输入集合+1,如图9所示。

图9.更小值的输入集合向下进1
用C#代码表示Merge Join的话如代码1所示。










