可以看出代码运行耗时0.0000279秒。
下面我们将循环展开一次,即把上述代码中的循环改为如下代码:
for(int i = 0;i < count;i += 2){
sum += i;
sum += i+1;
}
即每次循环将i和i+1一起累加到sum变量上,这样可以把循环次数从10000次降低到5000次,由于CPU的高度流水线化,连续两个加法指令增加耗时很低,所以此版本代码可以一定程度上提高程序运行速度,运行结果如下:
代码运行耗时0.0000159秒,相较于未优化代码速度快了将近一倍。
当然,我们可以继续增加循环展开次数以进一步提高程序运行速度,但是这个增加循环展开次数也是有限度的,当达到了CPU的最高吞吐量之后,继续增加循环展开次数是没有意义的。
上述循环展开后的代码依然有进一步优化的空间,那就是消除连续指令的相关性,以达到指令级并行,我们可以看到循环展开后的代码,循环体中有两条语句:sum += i 和 sum += i+1,第二条语句sum += i+1依赖于第一条命来sum += i的执行结果,所以这两条语句只能依次执行,限制了CPU进一步提高性能的可能。如果我们将循环体改为如下代码:
int sum1=0,sum2=0;
for(int i=0;i < count;i+=2){
sum1 += i;
sum2 += i+1;
}
sum = sum1 + sum2;
我们新建了两个变量sum1和sum2用于存储循环展开时两个累加语句的累加结果,最后在循环体外将两部分结果相加得到最终结果。该代码中两个累加语句之间是互不相关的,所以CPU可以并行执行这两条指令,以达到性能的进一步提高。下面是运行结果:











