本文实例讲述了C++数据结构与算法之哈夫曼树的实现方法。,具体如下:
哈夫曼树又称最优二叉树,是一类带权路径长度最短的树。
对于最优二叉树,权值越大的结点越接近树的根结点,权值越小的结点越远离树的根结点。
前面一篇图文详解JAVA实现哈夫曼树对哈夫曼树的原理与java实现方法做了较为详尽的描述,这里再来看看C++实现方法。
具体代码如下:
#include <iostream>
using namespace std;
#if !defined(_HUFFMANTREE_H_)
#define _HUFFMANTREE_H_
/*
* 哈夫曼树结构
*/
class HuffmanTree
{
public:
unsigned int Weight;
unsigned int Parent;
unsigned int lChild;
unsigned int rChild;
};
typedef char **HuffmanCode;
/*
* 从结点集合中选出权值最小的两个结点
* 将值分别赋给s1和s2
*/
void Select(HuffmanTree* HT,int Count,int *s1,int *s2)
{
unsigned int temp1=0;
unsigned int temp2=0;
unsigned int temp3;
for(int i=1;i<=Count;i++)
{
if(HT[i].Parent==0)
{
if(temp1==0)
{
temp1=HT[i].Weight;
(*s1)=i;
}
else
{
if(temp2==0)
{
temp2=HT[i].Weight;
(*s2)=i;
if(temp2<temp1)
{
temp3=temp2;
temp2=temp1;
temp1=temp3;
temp3=(*s2);
(*s2)=(*s1);
(*s1)=temp3;
}
}
else
{
if(HT[i].Weight<temp1)
{
temp2=temp1;
temp1=HT[i].Weight;
(*s2)=(*s1);
(*s1)=i;
}
if(HT[i].Weight>temp1&&HT[i].Weight<temp2)
{
temp2=HT[i].Weight;
(*s2)=i;
}
}
}
}
}
}
/*
* 霍夫曼编码函数
*/
void HuffmanCoding(HuffmanTree * HT,
HuffmanCode * HC,
int *Weight,
int Count)
{
int i;
int s1,s2;
int TotalLength;
char* cd;
unsigned int c;
unsigned int f;
int start;
if(Count<=1) return;
TotalLength=Count*2-1;
HT = new HuffmanTree[(TotalLength+1)*sizeof(HuffmanTree)];
for(i=1;i<=Count;i++)
{
HT[i].Parent=0;
HT[i].rChild=0;
HT[i].lChild=0;
HT[i].Weight=(*Weight);
Weight++;
}
for(i=Count+1;i<=TotalLength;i++)
{
HT[i].Weight=0;
HT[i].Parent=0;
HT[i].lChild=0;
HT[i].rChild=0;
}
//建造哈夫曼树
for(i=Count+1;i<=TotalLength;++i)
{
Select(HT, i-1, &s1, &s2);
HT[s1].Parent = i;
HT[s2].Parent = i;
HT[i].lChild = s1;
HT[i].rChild = s2;
HT[i].Weight = HT[s1].Weight + HT[s2].Weight;
}
//输出霍夫曼编码
(*HC)=(HuffmanCode)malloc((Count+1)*sizeof(char*));
cd = new char[Count*sizeof(char)];
cd[Count-1]='