二叉树是一种非常重要的数据结构。本文总结了二叉树的常见操作:二叉树的构建,查找,删除,二叉树的遍历(包括前序遍历、中序遍历、后序遍历、层次遍历),二叉搜索树的构造等。
1. 二叉树的构建
二叉树的基本构建方式为:添加一个节点,如果这是一棵空树,则将该节点作为根节点;否则按照从左到右、先左子树后右子树的顺序逐个添加节点。比如依次添加节点:1,6,10,2,7,11,则得到的二叉树为:

在这里,我们需要借助一个链表来保存节点,以实现二叉树的顺序插入,具体做法如下:
1.0 初始化一个用来保存二叉树节点的空链表;
1.1 插入一个节点,
①如果该树是一棵空树,则将该节点作为根节点,并且将该节点添加到链表中;
②如果该树不为空,取得链表第一个节点的值(注意不是链表的头节点)。如果该节点左子树为空,则将待插入节点添加到左子树,并且将左子树添加到链表;否则将待插入节点添加到右子树,将右子树添加到链表。此时,父节点的左右子树都不为空,将该父节点(即链表第一个节点)
弹出。
按照这样的顺序,我们就可以完成二叉树节点的顺序插入。
2. 二叉搜索树的构建
二叉搜索树是这样一棵树:对于任意一个节点,其左子树的值均小于父节点的值;右子树的值均大于父节点的值。从二叉树的根节点开始,对于其左右子树均按照这样的方式递归插入,即可以得到一棵二叉搜索树。二叉搜索树具有很好的性质,因为它的有序性,如果在二叉搜索树中查找一个元素可以按照类似二分查找的方式进行;对于二叉搜索树,如果采用中序遍历则可以得到按照值递增排列的节点。二叉搜索树的具体构建方式如下:
插入一个节点:
2.1如果当前节点本身值为空,则将插入节点直接作为当前节点;
2.2如果当前节点本身值不为空,
①比较插入节点的值与当前节点的值,如果插入节点值小于当前节点值,则将该节点递归插入左子树;
②比较插入节点的值与当前节点的值,如果插入节点值大于当前节点值,则将该节点递归插入右子树;
③ 如果插入节点的值等于当前节点的值,则直接返回(即二叉搜索树每个节点的值都是不同的)。
3.二叉搜索树的查找
二叉搜索树的查找类似于二分查找。具体步骤如下:
3.1 从根节点开始,比较查找值与当前节点值的大小:
① 如果当前节点值为空,则说明无法查找到该值,直接返回;
②如果当前节点值等于查找值,则查找成功;










