那么可以简单分析一下为:

同样,递归实现的条件也分为两种,我就只演示一种,代码如下:
#include<iostream>
#include<assert.h>
using namespace std;
int binaty_srarch(int* arr, int x, int left, int right)
{
assert(arr);
int mid;
if (left <= right)
{
mid = (left + right) / 2;
if (arr[mid] == x)
{
return mid;
}
else
if (x < arr[mid])
{
return binaty_srarch(arr, x, left, right - 1);
}
else if (x>arr[mid])
{
return binaty_srarch(arr, x, left + 1, right);
}
}
return -1;
}
int main()
{
int arr[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
cout << binaty_srarch(arr, 0, 0, (sizeof(arr) / sizeof(int)) - 1) << endl;
cout << binaty_srarch(arr, 1, 0, (sizeof(arr) / sizeof(int)) - 1) << endl;
cout << binaty_srarch(arr, 2, 0, (sizeof(arr) / sizeof(int)) - 1) << endl;
cout << binaty_srarch(arr, 3, 0, (sizeof(arr) / sizeof(int)) - 1) << endl;
cout << binaty_srarch(arr, 4, 0, (sizeof(arr) / sizeof(int)) - 1) << endl;
cout << binaty_srarch(arr, 5, 0, (sizeof(arr) / sizeof(int)) - 1) << endl;
cout << binaty_srarch(arr, 6, 0, (sizeof(arr) / sizeof(int)) - 1) << endl;
cout << binaty_srarch(arr, 7, 0, (sizeof(arr) / sizeof(int)) - 1) << endl;
cout << binaty_srarch(arr, 8, 0, (sizeof(arr) / sizeof(int)) - 1) << endl;
cout << binaty_srarch(arr, 9, 0, (sizeof(arr) / sizeof(int)) - 1) << endl;
cout << binaty_srarch(arr, 10, 0, (sizeof(arr) / sizeof(int)) - 1) << endl;
return 0;
}
感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!
注:相关教程知识阅读请移步到C++教程频道。










