一.背景介绍:
给定n个权值作为n个叶子结点,构造一棵二叉树,若带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)。哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近。
二.实现步骤:
1.构造一棵哈夫曼树
2.根据创建好的哈夫曼树创建一张哈夫曼编码表
3.输入一串哈夫曼序列,输出原始字符
三.设计思想:
1.首先要构造一棵哈夫曼树,哈夫曼树的结点结构包括权值,双亲,左右孩子;假如由n个字符来构造一棵哈夫曼树,则共有结点2n-1个;在构造前,先初始化,初始化操作是把双亲,左右孩子的下标值都赋为0;然后依次输入每个结点的权值
2.第二步是通过n-1次循环,每次先找输入的权值中最小的两个结点,把这两个结点的权值相加赋给一个新结点,,并且这个新结点的左孩子是权值最小的结点,右孩子是权值第二小的结点;鉴于上述找到的结点都是双亲为0的结点,为了下次能正确寻找到剩下结点中权值最小的两个结点,每次循环要把找的权值最小的两个结点的双亲赋值不为0(i).就这样通过n-1循环下、操作,创建了一棵哈夫曼树,其中,前n个结点是叶子(输入的字符结点)后n-1个是度为2的结点
3.编码的思想是逆序编码,从叶子结点出发,向上回溯,如果该结点是回溯到上一个结点的左孩子,则在记录编码的数组里存“0”,否则存“1”,注意是倒着存;直到遇到根结点(结点双亲为0),每一次循环编码到根结点,把编码存在编码表中,然后开始编码下一个字符(叶子)
4.译码的思想是循环读入一串哈夫曼序列,读到“0”从根结点的左孩子继续读,读到“1”从右孩子继续,如果读到一个结点的左孩子和右孩子是否都为0,如果是说明已经读到了一个叶子(字符),翻译一个字符成功,把该叶子结点代表的字符存在一个存储翻译字符的数组中,然后继续从根结点开始读,直到读完这串哈夫曼序列,遇到结束符便退出翻译循环
四.源代码:
/***************************************
目的:1.根据输入的字符代码集及其权值集,
构造赫夫曼树,输出各字符的赫夫曼编码
2.输入赫夫曼码序列,输出原始字符代码
作者:Dmego 时间:2016-11-11
****************************************/
#include<iostream>
#define MAX_MA 1000
#define MAX_ZF 100
using namespace std;
//哈夫曼树的储存表示
typedef struct
{
int weight; //结点的权值
int parent, lchild, rchild;//双亲,左孩子,右孩子的下标
}HTNode,*HuffmanTree; //动态分配数组来储存哈夫曼树的结点
//哈夫曼编码表的储存表示
typedef char **HuffmanCode;//动态分配数组存储哈夫曼编码
//返回两个双亲域为0且权值最小的点的下标
void Select(HuffmanTree HT, int n, int &s1, int &s2)
{
/*n代表HT数组的长度
*/
//前两个for循环找所有结点中权值最小的点(字符)
for (int i = 1; i <= n; i++)
{//利用for循环找出一个双亲为0的结点
if (HT[i].parent == 0)
{
s1 = i;//s1初始化为i
break;//找到一个后立即退出循环
}
}
for (int i = 1; i <= n; i++)
{/*利用for循环找到所有结点(字符)权值最小的一个
并且保证该结点的双亲为0*/
if (HT[i].weight < HT[s1].weight && HT[i].parent == 0)
s1 = i;
}
//后两个for循环所有结点中权值第二小的点(字符)
for (int i = 1; i <= n; i++)
{//利用for循环找出一个双亲为0的结点,并且不能是s1
if (HT[i].parent == 0 && i != s1)
{
s2 = i;//s2初始化为i
break;//找到一个后立即退出循环
}
}
for (int i = 1; i <= n; i++)
{/*利用for循环找到所有结点(字符)权值第二小的一个,
该结点满足不能是s1且双亲是0*/
if (HT[i].weight < HT[s2].weight && HT[i].parent == 0 && i!= s1)
s2 = i;
}
}
//构造哈夫曼树
void CreateHuffmanTree(HuffmanTree &HT, int n)
{
/*-----------初始化工作-------------------------*/
if (n <= 1)
return;
int m = 2 * n - 1;
HT = new HTNode[m + 1];
for (int i = 1; i <= m; ++i)
{//将1~m号单元中的双亲,左孩子,右孩子的下标都初始化为0
HT[i].parent = 0; HT[i].lchild = 0; HT[i].rchild = 0;
}
for (int i = 1; i <= n; ++i)
{
cin >> HT[i].weight;//输入前n个单元中叶子结点的权值
}
/*-----------创建工作---------------------------*/
int s1,s2;
for (int i = n + 1; i <= m; ++i)
{//通过n-1次的选择,删除,合并来构造哈夫曼树
Select(HT, i - 1, s1, s2);
/*cout << HT[s1].weight << " , " << HT[s2].weight << endl;*/
/*将s1,s2的双亲域由0改为i
(相当于把这两个结点删除了,这两个结点不再参与Select()函数)*/
HT[s1].parent = i;
HT[s2].parent = i;
//s1,与s2分别作为i的左右孩子
HT[i].lchild = s1;
HT[i].rchild = s2;
//结点i的权值为s1,s2权值之和
HT[i].weight = HT[s1].weight + HT[s2].weight;
}
}
//从叶子到根逆向求每个字符的哈夫曼编码,储存在编码表HC中
void CreatHuffmanCode(HuffmanTree HT, HuffmanCode &HC, int n)
{
HC = new char*[n + 1];//分配储存n个字符编码的编码表空间
char *cd = new char[n];//分配临时存储字符编码的动态空间
cd[n - 1] = '