二、二维数组与数组指针
假如有如下二维数组:
char a[3][2];
由于实际上并不存在多维数组,因此,可以将a[3][2]看成是一个具有3个元素的一维数组,只是这三个元素分别又是一个一维数组。实际上,在内存中,该数组的确是按照一维数组的形式存储的,存储顺序为(低地址在前):a[0][0]、a[0][1]、a[1][0]、a[1][1]、a[2][0]、a[2][1]。(此种方式也不是绝对,也有按列优先存储的模式)
为了方便理解,我画了一张逻辑上的内存图,之所以说是逻辑上的,是因为该图只是便于理解,并不是数组在内存中实际的存储模型(实际模型为前文所述)。
如上图所示,我们可以将数组分成两个维度来看,首先是第一维,将a[3][2]看成一个具有三个元素的一维数组,元素分别为:a[0]、a[1]、a[2],其中,a[0]、a[1]、a[2]又分别是一个具有两个元素的一维数组(元素类型为char)。从第二个维度看,此处可以将a[0]、a[1]、a[2]看成自己代表”第二维”数组的数组名,以a[0]为例,a[0](数组名)代表的一维数组是一个具有两个char类型元素的数组,而a[0]是这个数组的数组名(代表数组首元素首地址),因此a[0]类型为char *,同理a[1]和a[2]类型都是char *。而a是第一维数组的数组名,代表首元素首地址,而首元素是一个具有两个char类型元素的一维数组,因此a就是一个指向具有两个char类型元素数组的数组指针,也就是char(*)[2]。
也就是说,如下的赋值是正确的:
char (*p)[2] = a;//a为第一维数组的数组名,类型为char (*)[2]
char * p = a[0];//a[0]维第二维数组的数组名,类型为char *
同样,对a取地址操作代表整个数组的首地址,类型为数组类型(请允许我暂且这么称呼),也就是char (*)[3][2],所以如下赋值是正确的:
char (*p)[3][2] = &a;
三、三维数组与数组指针
假设有三维数组:
char a[3][2][2];
同样,为了便于理解,特意画了如下的逻辑内存图。分析方法和二维数组类似,首先,从第一维角度看过去,a[3][2][2]是一个具有三个元素a[0]、a[1]、a[2]的一维数组,只是这三个元素分别又是一个"二维"数组,a作为第一维数组的数组名,代表数组首元素的首地址,也就是一个指向一个二维数组的数组指针,其类型为char (*)[2][2]。从第二维角度看过去,a[0]、a[1]、a[2]分别是第二维数组的数组名,代表第二维数组的首元素的首地址,也就是一个指向一维数组的数组指针,类型为char(*)[2];同理,从第三维角度看过去,a[0][0]、a[0][1]、a[1][0]、a[1][1]、a[2][0]、a[2][1]又分别是第三维数组的数组名,代表第三维数组的首元素的首地址,也就是一个指向char类型的指针,类型为char *。










