有了这个类,我们就可以把一个简单的运算表达式的结果封装到一个对象里面去了,当然,我们得先将加法操作符(以及其它操作符)重载一下:
VecTmp operator+(const vector<int>& op1, const vector<int>& op2) {
return VecTmp(OT_ADD, op1, op2);
}
这样一来,对于 v1 + v2,我们就得到了一个非常轻量的 VecTmp 对象,而该对象可以很轻松地转化 v1 + v2 的结果(遍历一遍 VecTmp 中的操作数)。但上面的做法还不能处理 v1 + v2 * v3 这样的套嵌的复杂表达式:v2 * v3 得到一个 VecTmp,那 v1 + VecTmp 怎么搞呢?
同理,我们还是得把 v1 + VecTmp 放到一个轻量的对象里,因此最好我们的 VecTmp 中保存的操作数也能是 VecTmp 类型的,有点递归的味道。。。用模板就可以了,于是得到如下代码:
#include <vector>
#include <iostream>
using namespace std;
enum OpType {
OT_ADD,
OT_SUB,
OT_MUL,
OT_DIV,
};
template<class T1, class T2>
class VecSum {
OpType type_;
const T1& op1_;
const T2& op2_;
public:
VecSum(int type, const T1& op1, const T2& op2): type_(type), op1_(op1), op2_(op2) {}
int operator[](const int i) const {
switch(type_) {
case OT_ADD: return op1_[i] + op2_[i];
case OT_SUB: return op1_[i] - op2_[i];
case OT_MUL: return op1_[i] * op2_[i];
case OT_DIV: return op1_[i] / op2_[i];
default: throw "bad type";
}
}
};
template<class T1, class T2>
VecSum<T1, T2> operator+(const T1& t1, const T2& t2) {
return VecSum<T1, T2>(OT_ADD, t1, t2);
}
template<class T1, class T2>
VecSum<T1, T2> operator*(const T1& t1, const T2& t2) {
return VecSum<T1, T2>(OT_MUL, t1, t2);
}
int main() {
std::vector<int> v1{1, 2, 3}, v2{4, 5, 6}, v3{7, 8, 9};
auto r = v1 + v2 * v3;
for (auto i = 0; i < r.size(); ++i) {
std::cout << r[i] << " ";
}
}
上面的代码漂亮地解决了前面提到的效率问题,扩展性也很好而且对 vector 来说还是非侵入性的,虽然实现上乍看起来可能不是很直观,除此也还有些小问题可以更完善些:
操作符重载那里很可能会影响别的类型,因此最好限制一下,只针对 vector 和 VecTmp 进行重载,这里可以用 SFINAE 来处理。
VecTmp 的 operator[] 函数中的 switch 可以优化掉,VecTmp 模板只需增加一个参数,然后对各种运算类型进行偏特化就可以了。
VecTmp 对保存的操作数是有要求的,只能是 vector 或者是 VecTmp<>,这里也应该用 SFINAE 强化一下限制,使得用错时出错信息好看些。
现在我们来重头再看看这一小段奇怪的代码,显然关键在于 VecTmp 这个类,我们可以发现,它的接口其实很简单直白,但它的类型却可以是那么地复杂,比如说对于 v1 + v2 * v3 这个表达式,它的结果的类型是这样的: VecTmp<vector<int>, VecTmp<vector<int>, vector<int>>>,如果表达式再复杂些,它的类型也就更复杂了,如果你看仔细点,是不是还发现这东西和哪里很像?像一棵树,一棵类型的树。










