什么是字节对齐,为什么要对齐?
现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定类型变量的时候经常在特 定的内存地址访问,这就需要各种类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个的排放,这就是对齐。
对齐的作用和原因:各个硬件平台对存储空间的处理上有很大的不同。一些平台对某些特定类型的数据只能从某些特定地址开始存取。比如有些架构的CPU在访问一个没有进行对齐的变量的时候会发生错误,那么在这种架构下编程必须保证字节对齐.其他平台可能没有这种情况,但是最常见的是如果不按照适合其平台要求对数据存放进行对齐,会在存取效率上带来损失。比如有些平台每次读都是从偶地址开始,如果一个int型(假设为32位系统)如果存放在偶地址开始的地方,那么一个读周期就可以读出这32bit,而如果存放在奇地址开始的地方,就需要2个读周期,并对两次读出的结果的高低字节进行拼凑才能得到该32bit数据。显然在读取效率上下降很多。
结构的存储分配
编译器按照结构体成员列表的顺序为每个成员分配内存,当存储成员时需要满足正确地边界对齐要求时,成员之间可能出现用于填充地额外内存空间。32位系统每次分配字节数最多为4个字节,64位系统分配字节数最多为8个字节。
以下图表是在不同系统中基本类型数据内存大小和默认对齐模数:
注:此外指针所占内存的长度由系统决定,在32位系统下为32位(即4个字节),64位系统下则为64位(即8个字节).
没有#pragma pack宏的对齐
对齐规则:
结构体的起始存储位置必须是能够被该结构体中最大的数据类型所整除。
每个数据成员存储的起始位置是自身大小的整数倍(比如int在32位机为4字节,则int型成员要从4的整数倍地址开始存储)。
结构体总大小(也就是sizeof的结果),必须是该结构体成员中最大的对齐模数的整数倍。若不满足,会根据需要自动填充空缺的字节。











