C++ COM编程之接口背后的虚函数表

2020-01-06 12:54:53王旭

此时,代码的运行结果为:I am B.这个时候就表现出来了多态行为。好了,多了我也不说了,就通过这个简单的例子,你就能体会到多态的概念了。从下面才开始今天的主题。

虚函数表

多态机制的关键就是在于虚函数表,也就是vtbl。当我们定义一个类,类中包含虚函数时,其实也就定义了一张虚函数表,没有虚函数的类是不包含虚函数表的,只有该类被实例化时,才会将这个表分配到这个实例的内存中;在这张虚函数表中,存放了每个虚函数的地址;它就像一个地图一样,指明了实际所应该调用的函数。比如我定义一个类,如下:

 

复制代码
class CIF
{
public:
     CIF(){}
     CIF(int i, int f) : m_iVar(i), m_fVar(f){}
     virtual void IF1() { cout<<"I'm IF1"<<endl; }
     virtual void IF2() { cout<<"I'm IF2"<<endl; }
     virtual void IF3() { cout<<"I'm IF3"<<endl; }
     void MemFunc(){ cout<<"I'm IF4"<<endl; }
private:
     int m_iVar;
     float m_fVar;
};

 

这样的一个类,当你去定义这个类的实例时,编译器会给这个类分配一个成员变量,该变量指向这个虚函数表,这个虚函数表中的每一项都会记录对应的虚函数的地址;如下图:

C++ COM编程之接口背后的虚函数表

这个类的变量还没有被初始化时,就像上图那样,变量的值都是随机值,而指向虚拟函数表的指针__vfptr中对应的虚函数地址也是错误的地址;只有等我们真正的完成了这个变量的声明和初始化时,这些值才能被正确的初始化,如下图:

C++ COM编程之接口背后的虚函数表

从上图中就可以看到,初始化完成以后,指向虚函数表的__vfptr指针中的元素都被赋予了正确的虚函数值,分别指向了在类中定义的三个虚函数。也看到了,__vfptr指针定义的位置也比m_iVar和m_fVar变量的位置靠前;在C++编译器中,它保证虚函数表的指针存在于对象实例中最前面的位置,这主要是为了在多层继承或是多重继承的情况下,能以高性能取到这张虚函数表,然后进行遍历,查找对应的虚函数指针,进行对应的调用。