return 1;
return n * Factorial(n - 1);
}
你知道的,n的阶乘实际上是n-1的阶乘乘以n,且n>0。
它可以表示成 Factorial(n) = Factorial(n-1) * n
这是方法的返回值,但我们需要一个条件
如果 n=0 返回1。
现在这个程式的逻辑应该很清楚了,这样我们就能够轻易的理解。
2. Fibonacci数列
Fibonacci数列是按以下顺序排列的数字:
0,1,1,2,3,5,8,13,21,34,55,…如果F0 = 0 并且 F1= 1 那么Fn = Fn-1 + Fn-2
下面的方法就是用来计算Fn的(没有递归,性能好)
复制代码
public long Fib(int n)
{
if (n < 2)
return n;
long[] f = new long[n+1];
f[0] = 0;
f[1] = 1;
for (int i = 2; i <= n; i++)
{
f[i] = f[i - 1] + f[i - 2];
}
return f[n];
}
如果我们使用递归方法,这个代码将更加简单,但性能很差。
复制代码
public long Fib(int n)
{
if (n == 0 || n == 1) //满足条件
return n;
return Fib(k - 2) + Fib(k - 1);
}
<STRONG><SPAN style="FONT-SIZE: medium">3. 布尔组合</SPAN></STRONG>
有时我们需要解决的问题比Fibonacci数列复杂很多,例如我们要枚举所有的布尔变量的组合。换句话说,如果n=3,那么我们必须输出如下结果:










