go-torch test profile 会生成 torch.svg 文件。可以用浏览器打开,如图。

刚才只是讲了 CPU 的占用分析文件的生成查看,其实内存快照的生成相似。http://localhost:9876/debug/pprof/heap,会下载得到 heap.gz 文件。
我们同样可以使用 go tool pprof test heap.gz,然后输入 top 或 web 命令查看相关内容。


通用程序使用 pprof
我们写的 Go 程序并非都是 Web 程序,这时候再使用上面的方法就不行了。
我们仍然可以使用 pprof 工具,但引入的位置为 runtime/pprof 。
这里贴出两个函数,作为示例:
// 生成 CPU 报告
func cpuProfile() {
f, err := os.OpenFile("cpu.prof", os.O_RDWR|os.O_CREATE, 0644)
if err != nil {
log.Fatal(err)
}
defer f.Close()
log.Println("CPU Profile started")
pprof.StartCPUProfile(f)
defer pprof.StopCPUProfile()
time.Sleep(60 * time.Second)
fmt.Println("CPU Profile stopped")
}
// 生成堆内存报告
func heapProfile() {
f, err := os.OpenFile("heap.prof", os.O_RDWR|os.O_CREATE, 0644)
if err != nil {
log.Fatal(err)
}
defer f.Close()
time.Sleep(30 * time.Second)
pprof.WriteHeapProfile(f)
fmt.Println("Heap Profile generated")
}
两个函数分别会生成 cpu.prof 和 heap.prof 文件。仍然可以使用 go tool pprof 工具进行分析,在此就不赘述。
Trace 报告
直接贴代码:
// 生成追踪报告
func traceProfile() {
f, err := os.OpenFile("trace.out", os.O_RDWR|os.O_CREATE, 0644)
if err != nil {
log.Fatal(err)
}
defer f.Close()
log.Println("Trace started")
trace.Start(f)
defer trace.Stop()
time.Sleep(60 * time.Second)
fmt.Println("Trace stopped")
}
使用工具 go tool trace 进行分析,会得到非常详细的追踪报告,供更深入的程序分析优化。由于报告内容比较复杂,且使用方法类似,就不继续了。读者可自行尝试。
贴张网上的图给大家大概看一下:

参考:https://github.com/caibirdme/hand-to-hand-optimize-go
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持易采站长站。










