详解Linux多线程编程(不限Linux)

2019-10-13 14:05:59丽君

在对临界资源进行操作之前需要pthread_mutex_lock先加锁,操作完之后pthread_mutex_unlock再解锁。而且在这之前需要声明一个pthread_mutex_t类型的变量,用作前面两个函数的参数。具体代码见第5节。

5、线程之间的同步

第5点——主线程在检测到g_Flag从1变为2,或者从2变为1的时候退出。就需要用到线程同步技术!线程同步需要条件变量。

条件变量:

使用条件变量可以以原子方式阻塞线程,直到某个特定条件为真为止。条件变量始终与互斥锁一起使用。对条件的测试是在互斥锁(互斥)的保护下进行的。

如果条件为假,线程通常会基于条件变量阻塞,并以原子方式释放等待条件变化的互斥锁。如果另一个线程更改了条件,该线程可能会向相关的条件变量发出信号,从而使一个或多个等待的线程执行以下操作:

唤醒 再次获取互斥锁 重新评估条件

在以下情况下,条件变量可用于在进程之间同步线程:

线程是在可以写入的内存中分配的 内存由协作进程共享

“使用条件变量可以以原子方式阻塞线程,直到某个特定条件为真为止。”即可用到第5点,主线程main函数阻塞于等待g_Flag从1变为2,或者从2变为1。条件变量的相关函数如下:

#include <pthread.h>
 
int pthread_cond_wait(pthread_cond_t *cptr, pthread_mutex_t *mptr); 
int pthread_cond_signal(pthread_cond_t *cptr); 
//Both return: 0 if OK, positive Exxx value on error

pthread_cond_wait用于等待某个特定的条件为真,pthread_cond_signal用于通知阻塞的线程某个特定的条件为真了。在调用者两个函数之前需要声明一个pthread_cond_t类型的变量,用于这两个函数的参数。

为什么条件变量始终与互斥锁一起使用,对条件的测试是在互斥锁(互斥)的保护下进行的呢?因为“某个特性条件”通常是在多个线程之间共享的某个变量。互斥锁允许这个变量可以在不同的线程中设置和检测。

通常,pthread_cond_wait只是唤醒等待某个条件变量的一个线程。如果需要唤醒所有等待某个条件变量的线程,需要调用:

int pthread_cond_broadcast (pthread_cond_t * cptr);

默认情况下面,阻塞的线程会一直等待,知道某个条件变量为真。如果想设置最大的阻塞时间可以调用:

int pthread_cond_timedwait (pthread_cond_t * cptr, pthread_mutex_t *mptr, const struct timespec *abstime);

如果时间到了,条件变量还没有为真,仍然返回,返回值为ETIME。

6、试题最终代码

通过前面的介绍,我们可以轻松的写出代码了,如下所示:

/*
 是否熟悉POSIX多线程编程技术?如熟悉,编写程序完成如下功能:
 1)有一int型全局变量g_Flag初始值为0;
 2)在主线称中起动线程1,打印“this is thread1”,并将g_Flag设置为1
 3)在主线称中启动线程2,打印“this is thread2”,并将g_Flag设置为2
 4)线程序1需要在线程2退出后才能退出
 5)主线程在检测到g_Flag从1变为2,或者从2变为1的时候退出
 */
#include<stdio.h>
#include<stdlib.h>
#include<pthread.h>
#include<errno.h>
#include<unistd.h>

typedef void* (*fun)(void*);

int g_Flag=0;
static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

void* thread1(void*);
void* thread2(void*);

/*
 * when program is started, a single thread is created, called the initial thread or main thread.
 * Additional threads are created by pthread_create.
 * So we just need to create two thread in main().
 */

int main(int argc, char** argv)
{
 printf("enter mainn");
 pthread_t tid1, tid2;
 int rc1=0, rc2=0;
 rc2 = pthread_create(&tid2, NULL, thread2, NULL);
 if(rc2 != 0)
 printf("%s: %dn",__func__, strerror(rc2));

 rc1 = pthread_create(&tid1, NULL, thread1, &tid2);
 if(rc1 != 0)
 printf("%s: %dn",__func__, strerror(rc1));

 pthread_cond_wait(&cond, &mutex);
 printf("leave mainn");
 exit(0); 
}

/*
 * thread1() will be execute by thread1, after pthread_create()
 * it will set g_Flag = 1;
 */
void* thread1(void* arg)
{
 printf("enter thread1n");
 printf("this is thread1, g_Flag: %d, thread id is %un",g_Flag, (unsigned int)pthread_self());
 pthread_mutex_lock(&mutex);
 if(g_Flag == 2)
 pthread_cond_signal(&cond);
 g_Flag = 1;
 printf("this is thread1, g_Flag: %d, thread id is %un",g_Flag, (unsigned int)pthread_self());
 pthread_mutex_unlock(&mutex);
 pthread_join(*(pthread_t*)arg, NULL);
 printf("leave thread1n");
 pthread_exit(0);
}

/*
 * thread2() will be execute by thread2, after pthread_create()
 * it will set g_Flag = 2;
 */
void* thread2(void* arg)
{
 printf("enter thread2n");
 printf("this is thread2, g_Flag: %d, thread id is %un",g_Flag, (unsigned int)pthread_self());
 pthread_mutex_lock(&mutex);
 if(g_Flag == 1)
 pthread_cond_signal(&cond);
 g_Flag = 2;
 printf("this is thread2, g_Flag: %d, thread id is %un",g_Flag, (unsigned int)pthread_self());
 pthread_mutex_unlock(&mutex);
 printf("leave thread2n");
 pthread_exit(0);
}