浅谈生产者消费者模型(Linux系统下的两种实现方法)

2019-10-13 10:27:01丽君

生产者消费者问题是同步问题中的一种常见情况,借用一下维基百科的话

生产者消费者问题(英语:Producer-consumer problem),也称有限缓冲问题(英语:Bounded-buffer problem),是一个多线程同步问题的经典案例。该问题描述了两个共享固定大小缓冲区的线程——即所谓的“生产者”和“消费者”——在实际运行时会发生的问题。生产者的主要作用是生成一定量的数据放到缓冲区中,然后重复此过程。与此同时,消费者也在缓冲区消耗这些数据。该问题的关键就是要保证生产者不会在缓冲区满时加入数据,消费者也不会在缓冲区中空时消耗数据。

第一种实现信号量配合互斥锁实现,这种方法很清晰简单

信号量:

信号量的特性如下:信号量是一个非负整数(车位数),所有通过它的线程/进程(车辆)都会将该整数减一(通过它当然是为了使用资源),当该整数值为零时,所有试图通过它的线程都将处于等待状态。在信号量上我们定义两种操作: Wait(等待) 和 Release(释放)。当一个线程调用Wait操作时,它要么得到资源然后将信号量减一,要么一直等下去(指放入阻塞队列),直到信号量大于等于一时。Release(释放)实际上是在信号量上执行加操作,对应于车辆离开停车场,该操作之所以叫做“释放”是因为释放了由信号量守护的资源。

wait, release在Linux下

int sem_wait(sem_t * sem);
int sem_post(sem_t * sem);

设定两个信号量,empty用来表示空槽的个数,full用来表示占有的个数

生产者在向任务队列里放资源时,调用sem_wait(&full)来检查队列是否已满,如果满的话,就阻塞,直到有消费者从里面取资源再苏醒,如果不满,就放资源,并通知消费者来取。

消费者在从任务队列里取资源时,调用sem_wait(&empty)来检查队列是否为空,如果空的话,就阻塞,直到有生产者向里面放资源再苏醒,如果不空,就取资源,并通知生产者来放。

而互斥锁仅仅是为了防止多个线程同时对队列进行操作,造成未知的结果。

#include <stdio.h>
#include <pthread.h>
#include <semaphore.h>

#define MAX 5 //队列长度

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
sem_t full; 	//填充的个数
sem_t empty; 	//空槽的个数

int top = 0;   //队尾
int bottom = 0; //队头

void* produce(void* arg)
{
	int i;
	for ( i = 0; i < MAX*2; i++)
	{
		printf("producer is preparing datan");
		sem_wait(&empty);//若空槽个数低于0阻塞
		
		pthread_mutex_lock(&mutex);
		
		top = (top+1) % MAX;
		printf("now top is %dn", top);

		pthread_mutex_unlock(&mutex);
		
		sem_post(&full);
	}
	return (void*)1;
}

void* consume(void* arg)
{
	int i;
	for ( i = 0; i < MAX*2; i++)
	{
		printf("consumer is preparing datan");
		sem_wait(&full);//若填充个数低于0阻塞
	
		pthread_mutex_lock(&mutex);
		
		bottom = (bottom+1) % MAX;
		printf("now bottom is %dn", bottom);

		pthread_mutex_unlock(&mutex);
		
		sem_post(&empty);
	}

	return (void*)2;
}

int main(int argc, char *argv[])
{
	pthread_t thid1;
	pthread_t thid2;
	pthread_t thid3;
	pthread_t thid4;

	int ret1;
	int ret2;
	int ret3;
	int ret4;

	sem_init(&full, 0, 0);
	sem_init(&empty, 0, MAX);

	pthread_create(&thid1, NULL, produce, NULL);
	pthread_create(&thid2, NULL, consume, NULL);
	pthread_create(&thid3, NULL, produce, NULL);
	pthread_create(&thid4, NULL, consume, NULL);

	pthread_join(thid1, (void**)&ret1);
	pthread_join(thid2, (void**)&ret2);
	pthread_join(thid3, (void**)&ret3);
	pthread_join(thid4, (void**)&ret4);

	return 0;
}