数据挖掘之Apriori算法详解和Python实现代码分享

2019-10-05 14:37:29丽君

                # print del_support
                for index,i in enumerate(del_num): # 计算每个关联规则支持度和自信度
                    index_support = 0
                    if len(self.support) != 1:
                        index_support = index
                    support =  float(self.support[index_location])/self.line_num * 100 # 支持度
                    s = [j for index_item,j in enumerate(self.item_name) if index_item in i]
                    if del_support[index]:
                        confidence = float(self.support[index_location])/del_support[index] * 100
                        if confidence > self.min_confidence:
                            print ','.join(s) , '->>' , self.item_name[each_location[index]] , ' min_support: ' , str(support) + '%' , ' min_confidence:' , str(confidence) + '%'

def main():
    c = Apriori('basket.txt', 14, 3, 13)
    d = Apriori('simple.txt', 50, 2, 6)

if __name__ == '__main__':
    main()
############################################################################
Status API Training Shop Blog About
© 2014 GitHub, Inc. Terms Privacy Security Contact

Apriori算法

Apriori(filename, min_support, item_start, item_end)

参数说明

filename:(路径)文件名
min_support:最小支持度
item_start:item起始位置
item_end:item结束位置

使用例子:


import apriori
c = apriori.Apriori('basket.txt', 11, 3, 13)

输出:


--------------------------------------------------------------------------------
The 1 loop
location [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]]
support [299, 183, 177, 303, 204, 302, 293, 287, 184, 292, 276]
num [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]