Python使用random和tertools模块解一些经典概率问题

2019-10-05 09:43:42于海丽

counter = [0, 0, 0, 0]

def once(): # 0 表示黑桃 A
 global cards
 ace = set(sample(cards, 13)) & {0,1,2,3}
 return len(ace), 0 in ace

for i in range(int(1e6)):
 a, s = once() # a 表示 A 的个数, s 表示是否有黑桃 A
 if a:
  counter[1] += 1
  if s: counter[3] += 1
 if a > 1:
  counter[0] += 1
  if s: counter[2] += 1

print('情况一:', counter[0]/counter[1], 'n情况二:', counter[2]/counter[3])

运行结果:

情况一: 0.3694922900321386
情况二: 0.5613778028656186

有趣的事情出来了:如果这个人宣布了手中 A 的花色,他手中持有多个 A 的概率竟然会大大增加。可这又该如何理解呢?

一个家庭中有两个小孩,已知其中一个是女孩,求另一个小孩也是女孩的概率

网络上每一次有人发帖提出与条件概率有关的悖论时,总会引来无数人的围观和争论,哪怕这些问题的实质都是相同的。本题目无疑是争论的最多的问题之一。

说起来网上的分析都像模像样,一些原本都迷糊的人被人讲的晕头转向,一会觉得这个对,一会又觉得那个对。现在我不给你分析那些道理,就用计算机来模拟问题,让你直接得到结论,而毋须明白个中缘由。

from random import * # 0 表示女孩,1 表示男孩

family = (lambda n :[{randrange(2),randrange(2)} for i in range(n)])(int(1e6))

both = family.count({0}) # 都是女孩的家庭数
exist = len(family) - family.count({1}) # 有女孩的家庭数

print(both/exist)

运行结果:

0.33332221770186543

没有那些深奥的分析过程,寥寥数行代码就得到了问题的答案,想必这也是计算机引入数学计算与证明的好处。

生日悖论

每个人都有生日,偶尔会遇到与自己同一天过生日的人,但在生活中这种缘分似乎并不常有。我们猜猜看:在 50 个人当中出现这种缘分的概率有多大,是 10%、20% 还是 50%?

from random import *

counter, times = 0, int(1e6)
for i in range(times):
 if len({randrange(365) for i in range(50)}) != 50: # 存在同一天生日的人
  counter += 1

print('在 50 个人中有相同生日的概率为:',counter/times)

运行结果:

在 50 个人中有相同生日的概率为: 0.970109

在 50 个人中有相同生日的概率高达 97%,这个数字恐怕高出了绝大多数人的意料。我们没有算错,是我们的直觉错了,科学与生活又开了个玩笑。正因为计算结果与日常经验产生了如此明显的矛盾,该问题被称为「生日悖论」,它体现的是理性计算与感性认识的矛盾,并不引起逻辑矛盾,所以倒也算不上严格意义上的悖论。