如果 Thread.abort_on_exception 为 false,默认情况下,出现未处理的异常只是杀死当前线程和所有其余的继续运行。
如果想在任何线程中的任何未处理的异常导致解释退出中,设置类方法Thread.abort_on_exception 为 true。
t = Thread.new { ... }
t.abort_on_exception = true
线程变量:
一个线程可以正常访问是在范围内的任何变量的线程被创建时。一个线程块的局部变量是线程的局部,而不是共享。
Thread类提供一个特殊的功能,允许通过名称来创建和存取线程局部变量。只需把线程对象,如果它是一个Hash,写入元素使用[] =和读取他们带回使用[]。
在这个例子中,每个线程记录计数变量的当前值与该键mycount的一个threadlocal变量。
#!/usr/bin/ruby
count = 0
arr = []
10.times do |i|
arr[i] = Thread.new {
sleep(rand(0)/10.0)
Thread.current["mycount"] = count
count += 1
}
end
arr.each {|t| t.join; print t["mycount"], ", " }
puts "count = #{count}"
这将产生下面的结果:
8, 0, 3, 7, 2, 1, 6, 5, 4, 9, count = 10
主线程等待子线程完成,然后打印出每个捕获count的值。
线程优先级:
影响线程调度的第一因素,是线程的优先级:高优先级线程之前计划的低优先级的线程。更确切地说,一个线程将只获得CPU时间,如果没有更高优先级的线程等待运行。
可以设置和查询一个Ruby线程对象的优先级=和优先级的优先级。新创建的线程开始在相同的优先级的线程创建它。启动主线程优先级为0。
没有任何方法设置线程优先级在开始运行前。然而,一个线程可以提高或降低自己的优先级的第一次操作。
线程排斥:
如果两个线程共享访问相同的数据,至少有一个线程修改数据,你必须要特别小心,以确保任何线程都不能看到数据处于不一致的状态。这称为线程排除。
Mutex类是一些共享资源的互斥访问,实现了一个简单的信号锁定。即,只有一个线程可持有的锁在给定时间。其他线程可能选择排队等候的锁变得可用,或者可以简单地选择立即得到错误,表示锁定不可用。
通过将所有访问共享数据的互斥体的控制下,我们确保一致性和原子操作。我们的尝试例子,第一个无需mutax,第二个使用mutax:
无需Mutax的例子:
#!/usr/bin/ruby
require 'thread'
count1 = count2 = 0
difference = 0
counter = Thread.new do
loop do
count1 += 1
count2 += 1
end
end
spy = Thread.new do
loop do
difference += (count1 - count2).abs
end
end
sleep 1
puts "count1 : #{count1}"
puts "count2 : #{count2}"
puts "difference : #{difference}"
这将产生以下结果:
count1 : 1583766
count2 : 1583766
difference : 637992
#!/usr/bin/ruby
require 'thread'
mutex = Mutex.new
count1 = count2 = 0
difference = 0
counter = Thread.new do
loop do
mutex.synchronize do
count1 += 1
count2 += 1
end
end
end
spy = Thread.new do
loop do
mutex.synchronize do
difference += (count1 - count2).abs
end
end
end
sleep 1
mutex.lock
puts "count1 : #{count1}"
puts "count2 : #{count2}"
puts "difference : #{difference}"










