如图所示,InnoDB使用的是聚集索引,teacher_id身为二级索引,就要维护一个索引字段和主键id的树状结构(这里用链表形式表现),并保持顺序排列。
Innodb将这段数据分成几个个区间
| (negative infinity, 5], (5,30], (30,positive infinity); update class_teacher set class_name='初三四班' where teacher_id=30; |
不仅用行锁,锁住了相应的数据行;同时也在两边的区间,(5,30]和(30,positive infinity),都加入了gap锁。这样事务B就无法在这个两个区间insert进新数据。
受限于这种实现方式,Innodb很多时候会锁住不需要锁的区间。如下所示:
事务A 事务B 事务C
| begin; begin; begin; select id,class_name,teacher_id from class_teacher; id class_name teacher_id 1 初三一班 5 2 初三二班 30 update class_teacher set class_name='初一一班' where teacher_id=20; insert into class_teacher values (null,'初三五班',10); waiting ..... insert into class_teacher values (null,'初三五班',40); commit; 事务A commit之后,这条语句才插入成功 commit; commit; |
update的teacher_id=20是在(5,30]区间,即使没有修改任何数据,Innodb也会在这个区间加gap锁,而其它区间不会影响,事务C正常插入。
如果使用的是没有索引的字段,比如update class_teacher set teacher_id=7 where class_name='初三八班(即使没有匹配到任何数据)',那么会给全表加入gap锁。同时,它不能像上文中行锁一样经过MySQL Server过滤自动解除不满足条件的锁,因为没有索引,则这些字段也就没有排序,也就没有区间。除非该事务提交,否则其它事务无法插入任何数据。
行锁防止别的事务修改或删除,GAP锁防止别的事务新增,行锁和GAP锁结合形成的的Next-Key锁共同解决了RR级别在写数据时的幻读问题。
Serializable
这个级别很简单,读加共享锁,写加排他锁,读写互斥。使用的悲观锁的理论,实现简单,数据更加安全,但是并发能力非常差。如果你的业务并发的特别少或者没有并发,同时又要求数据及时可靠的话,可以使用这种模式。
这里要吐槽一句,不要看到select就说不会加锁了,在Serializable这个级别,还是会加锁的!










