可以看到有不少慢查询还未完成,从slow query log中也能发现,这类SQL发生的频率很高。
这是一个非常低效的SQL写法,导致需要对整个主键进行扫描,但实际上只需要取得一个最大值而已,从slow query log中可看到:
Rows_sent: 1 Rows_examined: 5502460
每次都要扫描500多万行数据,却只为读取一个最大值,效率非常低。
经过分析,这个SQL稍做简单改造即可在个位数毫秒级内完成,原先则是需要150-180秒才能完成,提升了N次方。
改造的方法是:对查询结果做一次倒序排序,取得第一条记录即可。而原先的做法是对结果正序排序,取最后一条记录,汗啊。。。
写在最后,小结
在这个例子中,产生瓶颈的原因比较好定位,SQL优化也不难,实际线上环境中,通常有以下几种常见的原因导致负载较高:
一次请求读写的数据量太大,导致磁盘I/O读写值较大,例如一个SQL里要读取或更新几万行数据甚至更多,这种最好是想办法减少一次读写的数据量;
SQL查询中没有适当的索引可以用来完成条件过滤、排序(ORDER BY)、分组(GROUP BY)、数据聚合(MIN/MAX/COUNT/AVG等),添加索引或者进行SQL改写吧;
瞬间突发有大量请求,这种一般只要能扛过峰值就好,保险起见还是要适当提高服务器的配置,万一峰值抗不过去就可能发生雪崩效应;
因为某些定时任务引起的负载升高,比如做数据统计分析和备份,这种对CPU、内存、磁盘I/O消耗都很大,最好放在独立的slave服务器上执行;
服务器自身的节能策略发现负载较低时会让CPU降频,当发现负载升高时再自动升频,但通常不是那么及时,结果导致CPU性能不足,抗不过突发的请求;
使用raid卡的时候,通常配备BBU(cache模块的备用电池),早期一般采用锂电池技术,需要定期充放电(DELL服务器90天一次,IBM是30天),我们可以通过监控在下一次充放电的时间前在业务低谷时提前对其进行放电,不过新一代服务器大多采用电容式电池,也就不存在这个问题了。
文件系统采用ext4甚至ext3,而不是xfs,在高I/O压力时,很可能导致%util已经跑到100%了,但iops却无法再提升,换成xfs一般可获得大幅提升;
内核的io scheduler策略采用cfq而非deadline或noop,可以在线直接调整,也可获得大幅提升。
更多关于MySQL相关内容感兴趣的读者可查看本站专题:《MySQL日志操作技巧大全》、《MySQL事务操作技巧汇总》、《MySQL存储过程技巧大全》、《MySQL数据库锁相关技巧汇总》及《MySQL常用函数大汇总》
希望本文所述对大家MySQL数据库计有所帮助。










